
4 February 2026

Prepared for
Canonic

Prepared by
Failsafe

Canonic
Smart Contract Audit Report



Canonic: Smart Contract Audit Report 4 February 2026

Table of Contents

Project Details 2
Structure & Organization of The Security Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Executive Summary 3

Summary of Findings 4
Finding 1: Malicious Oracle Feed Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Finding 2: Oracle Staleness Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Finding 3: Fee On Transfer Incompatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Finding 4: Dust Rung Griefing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Finding 5: Sole Lp Fee Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Finding 6: Asymmetric Pause State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Finding 7: Withdrawal Fee Dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Finding 8: Rebasing Token Insolvency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Disclaimer 34

1



Canonic: Smart Contract Audit Report 4 February 2026

Project Details

Project Canonic
Website https://github.com/0xnerdz/canonic‑contracts
Blockchain MegaEth
Audit Type Smart Contract Audit Report
Initial Commit 09db16a07f87ccb6a0ecf16dab4b94f926f0489d
Final Commit 93d3b229d51f19a670fb778d4cc6c2690603b0a6
Timeline 18 January 2026 ‑ 4 February 2026

Final Report: 4 February 2026

Structure & Organization of The Security Report

Issues are tagged as “Open”, “Acknowledged”, “Partially Resolved”, “Resolved” or “Closed” depending onwhether
they have been fixed or addressed.

• Open: The issue has been reported and is awaiting remediation from developer team.

• Acknowledged: The developer team has reviewed and accepted the issue but has decided not to fix it.

• Partially Resolved: Mitigations have been applied, yet some risks or gaps still remain.

• Resolved: The issue has been fully addressed and no further work is necessary.

• Closed: The issue is deemed no longer pertinent or actionable.

Furthermore, the severity of each issue is written as assessed by the risk of exploitation or other unexpected or
otherwise unsafe behavior:

Critical The issue affects the platform in such a way that funds may be lost, allocated incorrectly, or other‑
wise result in a significant loss.

High The issue affects the ability of the platform to compile or operate in a significant way.
Medium The issue affects the ability of the platform to operate in a way that doesn’t significantly hinder its

behavior.
Low The issue has minimal impact on the platform’s ability to operate.
Info The issue is informational in nature and does not pose any direct risk to the platform’s operation.

2

https://github.com/0xnerdz/canonic-contracts


Canonic: Smart Contract Audit Report 4 February 2026

Executive Summary

FailSafe was engaged to perform a security audit of the Canonic smart contract suite, a Midpoint Anchored Or‑
der Book (MAOB) DeFi protocol deployed on MegaETH (L2) that enables on‑chain limit order trading with prices
anchored to discrete basis‑point rungs around an oracle‑provided midprice, accompanied by a liquidity provider
vault (CLP) for automatedmarket making.

Medium‑severity issues includeoracle staleness configurationwhere thecodeallowsmaxStaleSeconds = 0which
would disable price freshness validation, token compatibility problems where fee‑on‑transfer tokens can be de‑
posited into CLP but cannot be deployed toMAOB, economic vulnerabilities includingwithdrawal fee dilution due
to incorrect calculation order, ineffective anti‑spam protections for taker operations, an unconstrained asymmet‑
ric pause mechanism that lacks the time bounds and pre‑defined states needed to ensure market integrity, and a
sole LP fee bypass that was acknowledged as intended design. The low‑severity finding addresses rebasing token
insolvency risks as a design limitation requiring operational controls.

3



Canonic: Smart Contract Audit Report 4 February 2026

Summary of Findings

Severity Total Open Acknowledged Partially Resolved Resolved Closed

High 0 ‑ ‑ ‑ 0 ‑

Medium 7 ‑ 1 ‑ 6 ‑

Low 1 ‑ 1 ‑ ‑ ‑

Total 8 ‑ 2 ‑ 6 ‑

# Findings Severity Status

1 Malicious Oracle Feed Configuration Medium Resolved

2 Oracle Staleness Configuration Medium Resolved

3 Fee On Transfer Incompatibility Medium Resolved

4 Dust Rung Griefing Medium Resolved

5 Sole Lp Fee Bypass Medium Acknowledged

6 Asymmetric Pause State Medium Resolved

7 Withdrawal Fee Dilution Medium Resolved

8 Rebasing Token Insolvency Low Acknowledged

4



Canonic: Smart Contract Audit Report 4 February 2026

Finding 1: Malicious Oracle Feed Configuration

Severity: MEDIUM
Status: RESOLVED

Description

This is a privileged attack vector ‑ it requires a compromised OracleAdapter owner (e.g., leaked private key,
phishing, insider threat).

If the owner key is compromised, the attacker can immediately replace a legitimate price feed with a malicious
contract via setFeedAdvanced(). This malicious feed can return arbitrary prices, repricing the entire MAOB or‑
der book and allowing the attacker to drain all maker liquidity (including CLP vault funds) at deeply unfavorable
rates.

Critical Issue: No timelock exists on these functions. Without a timelock, there is no window for the team to
detect and respond to amalicious configuration change before it takes effect. A timelock (e.g., 24‑48 hours) would
provide time for monitoring systems to alert the team and allow intervention before funds are at risk.

Source

OracleAdapter.sol ‑ setFeedAdvanced:

contracts/OracleAdapter.sol:99-114 ‑ No timelock, immediate effect:

1 function setFeedAdvanced(address orderBook, FeedConfig calldata cfg) external onlyOwner {
2 require(orderBook != address(0), "orderBook zero");
3 require(cfg.sourceA != address(0), "sourceA zero"); // Only checks non-zero!
4 require(cfg.baseDecimals <= 18 && cfg.quoteDecimals <= 18, "decimals too large");
5 require(cfg.feedDecimals <= 18, "decimals too large");
6 require(cfg.feedType == SourceType.Custom, "custom only");
7 // ... decimal validation ...
8 feeds[orderBook] = cfg; // Malicious oracle stored IMMEDIATELY
9 feeds[orderBook].exists = true;

10 emit FeedSet(orderBook, cfg.feedType, cfg.sourceA, cfg.dataId);
11 // NO timelock delay - change is IMMEDIATE
12 }

The function accepts any non‑zero address as sourceA without validating that it implements a legitimate price
oracle or returns reasonable prices. A single compromised owner key can redirect all price feeds instantly.

OracleAdapter.sol ‑ setCompositeFeed:

contracts/OracleAdapter.sol:121-162 ‑ Same vulnerability with composite feeds:

5



Canonic: Smart Contract Audit Report 4 February 2026

1 function setCompositeFeed(address orderBook, uint8 baseDecimals, uint8 quoteDecimals, CompositeLeg[]
calldata legs)

2 external
3 onlyOwner
4 {
5 // ... validation ...
6 compositeCount[orderBook] = uint8(legs.length);
7 for (uint256 i = 0; i < 3; i++) {
8 if (i < legs.length) {
9 CompositeLeg calldata leg = legs[i];

10 require(leg.sourceA != address(0), "sourceA zero");
11 compositeLegs[orderBook][i] = leg; // Leg with invert=true stored IMMEDIATELY
12 }
13 // ...
14 }
15 emit CompositeFeedSet(orderBook, uint8(legs.length));
16 // NO timelock delay
17 }

The invert flag on composite legs can flip price direction (2000 USD/ETH becomes 0.0005 USD/ETH), enabling the
same attack vector.

MAOB.sol ‑ Price Consumption:

contracts/MAOB.sol:1582-1595 ‑ MAOB unconditionally trusts oracle:

1 function _getMidPrice() internal view returns (uint256 price, uint256 precision) {
2 uint48 updatedAt;
3 (price, precision, updatedAt) = oracle.getPrice(address(this));
4 if (price == 0 || precision == 0) revert MAOB__OraclePriceMissing();
5 // NO deviation check, NO sanity bounds, NO historical comparison
6 // Accepts ANY price the oracle returns
7 }

Testnet Configuration (Verified):

OracleAdapter

• Address: 0xe3d2310da37f1a75bdcc6bbdbe8219242509a948

• Owner: 0x88055628be8b2a855910d7c7860e3914cc777f89

Verification:

1 cast call 0xe3d2310da37f1a75bdcc6bbdbe8219242509a948 "owner()" --rpc-url https://carrot.megaeth.com/
rpc

Impact

• 100% of protocol TVL at risk ‑ drains all maker liquidity on affected MAOB

• CLP vault funds directly exposed as they hold MAOB orders

6



Canonic: Smart Contract Audit Report 4 February 2026

• Immediate effect ‑ no timelock means team has no time to respond or intervene

• Attack executes in 2 transactions (set feed → drain) or atomically via Multicall3

• Estimated profit: >99% of TVLminus gas costs

Attack Scenario:

1. Attacker deploys malicious oracle returning price = 1 (instead of ~2000e18)

2. Attacker calls setFeedAdvanced()with malicious oracle address

3. Attacker calls buyBaseExactOut() to purchase ALL ask liquidity for ~$0.0001

4. Alternatively, set price extremely high and drain bid liquidity via sellBaseTargetIn()

Remediation

1. Implement 24‑48 hour timelock for setFeedAdvanced() and setCompositeFeed() (see Timelock Gover‑
nance Appendix)

2. Add price deviation circuit breaker in MAOB ‑ pause if oracle deviates >X% from stored reference

3. Emit detailed events on feed changes for off‑chain monitoring

Resolution

Fixed in commit: c6c64315910fb811c3a298b9064df915e6da4026

The fix implements:

• A timelock controller (OZTimelockController) that wraps OpenZeppelin’s TimelockController

• The MAOB owner is set to the timelock, requiring a delay for all admin actions

• A pauseGuardian role that can pause instantly (emergency response) but cannot unpause

• Only the timelock can unpause, preventing guardian abuse

This ensures that malicious oracle configuration changes require a timelock delay, giving the team time to detect
and respond.

7

TIMELOCK_GOVERNANCE_APPENDIX.md
TIMELOCK_GOVERNANCE_APPENDIX.md


Canonic: Smart Contract Audit Report 4 February 2026

Finding 2: Oracle Staleness Configuration

Severity: MEDIUM
Status: RESOLVED

Description

TheOracleAdapter contract allows maxStaleSeconds to be configured as 0, which disables staleness validation en‑
tirely. While the current deployment correctly uses non‑zero values (3s for base tokens, 10s for quote tokens), the
code does not prevent administrators from setting maxStaleSeconds = 0, which would disable freshness checks.
Chainlink recommends validating price freshness for production deployments.

Chainlink’s Official Recommendation:

Chainlink’s official documentation explicitly states that consumers must validate price freshness using the
updatedAt return value from latestRoundData():

“Your application should track the latestTimestamp variable or use the updatedAt value from the
latestRoundData() function to make sure that the latest answer is recent enough for your application to
use it. If your application detects that the reported answer is not updated within the heartbeat or within
time limits that you determine are acceptable for your application, pause operation or switch to an alternate
operation mode while identifying the cause of the delay.”

Documentation Reference: https://docs.chain.link/data‑feeds#monitoring‑data‑feeds

The code allowing maxStaleSeconds = 0 creates a risk that future deployments or configuration changes could
inadvertently disable staleness validation.

Source

OracleAdapter.sol ‑ Conditional Staleness Check:

contracts/OracleAdapter.sol:218-220 ‑ Staleness check is skipped when maxStaleSeconds = 0:

1 if (leg.maxStaleSeconds != 0) { // Skipped when maxStaleSeconds == 0
2 require(block.timestamp <= uint256(legUpdatedAt) + leg.maxStaleSeconds, "leg stale");
3 }

8

https://docs.chain.link/data-feeds#monitoring-data-feeds


Canonic: Smart Contract Audit Report 4 February 2026

The staleness check is conditional on maxStaleSeconds != 0. If configured as 0, arbitrarily old prices would be
accepted without revert.

OracleAdapter.sol ‑ setFeedAdvanced (No Input Validation):

contracts/OracleAdapter.sol:99-114 ‑ No validation that maxStaleSeconds > 0:

1 function setFeedAdvanced(address orderBook, FeedConfig calldata cfg) external onlyOwner {
2 require(orderBook != address(0), "orderBook zero");
3 require(cfg.sourceA != address(0), "sourceA zero");
4 require(cfg.baseDecimals <= 18 && cfg.quoteDecimals <= 18, "decimals too large");
5 require(cfg.feedDecimals <= 18, "decimals too large");
6 require(cfg.feedType == SourceType.Custom, "custom only");
7 // NO validation that cfg.maxStaleSeconds > 0
8 feeds[orderBook] = cfg;
9 feeds[orderBook].exists = true;

10 }

OracleAdapter.sol ‑ setCompositeFeed (No Input Validation):

contracts/OracleAdapter.sol:121-162 ‑ Same issue with composite legs:

1 function setCompositeFeed(address orderBook, uint8 baseDecimals, uint8 quoteDecimals, CompositeLeg[]
calldata legs)

2 external
3 onlyOwner
4 {
5 // ...
6 for (uint256 i = 0; i < 3; i++) {
7 if (i < legs.length) {
8 CompositeLeg calldata leg = legs[i];
9 require(leg.sourceA != address(0), "sourceA zero");

10 // NO validation that leg.maxStaleSeconds > 0
11 compositeLegs[orderBook][i] = leg;
12 }
13 }
14 }

Impact

• If maxStaleSecondswere ever set to 0, oracle staleness protection would be completely disabled

• This would allow arbitrageurs to trade against stale prices, extracting value from liquidity providers

• Current deployments are protected (verified: 3s base, 10s quote), but code‑level protection is missing

• Future deployments or configuration updates could inadvertently disable protection

Remediation

Add input validation to reject maxStaleSeconds = 0:

In setFeedAdvanced:

9



Canonic: Smart Contract Audit Report 4 February 2026

1 function setFeedAdvanced(address orderBook, FeedConfig calldata cfg) external onlyOwner {
2 require(orderBook != address(0), "orderBook zero");
3 require(cfg.sourceA != address(0), "sourceA zero");
4 require(cfg.maxStaleSeconds != 0, "maxStaleSeconds zero"); // ADD THIS
5 // ...
6 }

In setCompositeFeed:

1 for (uint256 i = 0; i < legs.length; i++) {
2 CompositeLeg calldata leg = legs[i];
3 require(leg.sourceA != address(0), "sourceA zero");
4 require(leg.maxStaleSeconds != 0, "maxStaleSeconds zero"); // ADD THIS
5 compositeLegs[orderBook][i] = leg;
6 }

**In _readCustom and _readComposite (defense‑in‑depth):**

1 // Replace conditional check with mandatory check
2 require(cfg.maxStaleSeconds != 0, "maxStaleSeconds zero");
3 require(block.timestamp <= uint256(updatedAt) + cfg.maxStaleSeconds, "feed stale");

This ensures staleness validation cannot be accidentally or intentionally disabled.

Resolution

Fixed in commit: ebd30d67c2ab5ab160e48d1648db7571d0a7eb35

The fix adds validation at both configuration time and runtime:

• setFeedAdvanced() now requires cfg.maxStaleSeconds != 0

• setCompositeFeed() now requires leg.maxStaleSeconds != 0 for each leg

• _readCustom() and _readComposite() now enforce the check unconditionally (defense‑in‑depth)

10



Canonic: Smart Contract Audit Report 4 February 2026

Finding 3: Fee On Transfer Incompatibility

Severity: MEDIUM
Status: RESOLVED

Description

There is an inconsistent handling of Fee‑on‑Transfer (FOT) tokens between CLP andMAOB contracts that creates a
functional trap. CLP’sdepositDual()usesabalance‑deltapattern that correctly handles FOT tokensbymeasuring
actual received amounts. However, MAOB’s addLiquidityBatch() uses safeTransferFromExact()which reverts
if the received amount differs from the requested amount. Users can successfully deposit FOT tokens into CLP,
but when the operator attempts to deploy liquidity via placeOrders(), the transaction reverts at the MAOB level,
rendering the vault dysfunctional for such tokens.

Source

CLP.sol ‑ depositDual Function (Accepts FOT):

contracts/CLP.sol:176-182 ‑ Uses balance delta pattern:

1 uint256 baseBefore = baseToken.balanceOf(address(this));
2 baseToken.safeTransferFrom(msg.sender, address(this), baseDeposit);
3 baseDeposit = baseToken.balanceOf(address(this)) - baseBefore; // Uses actual received
4
5 uint256 quoteBefore = quoteToken.balanceOf(address(this));
6 quoteToken.safeTransferFrom(msg.sender, address(this), quoteDeposit);
7 quoteDeposit = quoteToken.balanceOf(address(this)) - quoteBefore;

The deposit function measures the actual received amount after transfer, which correctly handles FOT tokens.
Shares are minted based on the actual received amount.

MAOB.sol ‑ addLiquidityBatch Function (Rejects FOT):

contracts/MAOB.sol:366-371 ‑ Uses strict transfer validation:

1 if (totalBaseIn != 0) {
2 baseToken.safeTransferFromExact(msg.sender, address(this), totalBaseIn); // Reverts if fee taken
3 }
4 if (totalQuoteIn != 0) {
5 quoteToken.safeTransferFromExact(msg.sender, address(this), totalQuoteIn);
6 }

SafeTokenTransfer.sol ‑ safeTransferFromExact Function:

contracts/libraries/SafeTokenTransfer.sol:69-86 ‑ Enforces exact amounts:

11



Canonic: Smart Contract Audit Report 4 February 2026

1 function safeTransferFromExact(IERC20 token, address from, address to, uint256 amount)
2 internal
3 returns (uint256 received)
4 {
5 if (amount == 0) return 0;
6
7 uint256 balanceBefore = safeBalanceOf(token, to);
8 token.safeTransferFrom(from, to, amount);
9 uint256 balanceAfter = safeBalanceOf(token, to);

10 unchecked {
11 received = balanceAfter - balanceBefore;
12 }
13 if (received != amount) revert SafeTokenTransfer__TransferFromAmountMismatch();
14 }

The explicit check received != amount causes revert for any token where the transfer amount differs from the
requested amount, including FOT tokens.

CLP.sol ‑ placeOrders Function:

contracts/CLP.sol:251-264 ‑ Calls MAOB which will revert for FOT:

1 function placeOrders(
2 MAOB.LiquidityOrder[] calldata withdrawOrders,
3 MAOB.LiquidityOrder[] calldata balanceOrders
4 ) external nonReentrant onlyRole(OPERATOR_ROLE) returns (uint256[] memory orderIds) {
5 // ...
6 uint256[] memory balanceOrderIds =
7 balanceOrders.length == 0 ? new uint256[](0) : maob.addLiquidityBatch(balanceOrders);
8 // ...
9 }

Impact

• Denial of Service: CLP vault cannot perform its primary function with FOT tokens

• No Direct Fund Loss: Users can still withdraw via withdrawDual()which uses standard safeTransfer

• Lost Opportunity: Deposited funds remain idle, no yield generation possible

• Recovery Available: exitAndWithdrawAll()works for emergency recovery

• Affects any vault deployed with FOT tokens such as PAXG, STA, or similar 1‑2% fee tokens

Remediation

1. Option A (Fail Fast): Modify CLP.depositDual() to use safeTransferFromExact(), rejecting FOT tokens at
deposit time with a clear error message

2. Option B (Full Support): Modify MAOB to support FOT tokens with balance‑delta pattern and adjust order
sizes based on actual received amounts

12



Canonic: Smart Contract Audit Report 4 February 2026

3. Add explicit documentation that FOT tokens are not supported

4. Implement token validation in CLP constructor that tests transfer behavior before deployment

POC

File: Fee_On_Transfer_Incompatibility/FOTIncompatibilityPoC.t.sol

Attack Scenario (Operational Failure):

1. Admin deploys CLP/MAOB with a fee‑on‑transfer token (e.g., PAXG with 0.02% fee)

2. Users deposit funds via depositDual() ‑ succeeds, shares minted based on actual received amount

3. Operator calls placeOrders() to deploy idle liquidity to MAOB rungs

4. Transaction revertsatMAOB.addLiquidityBatch()withSafeTokenTransfer__TransferFromAmountMismatch

5. Vault is operationally dysfunctional ‑ cannot generate yield

6. Users must manually withdraw; opportunity cost incurred

How to Run:

1 cd canonic-contracts-main-latest
2 forge test --match-contract FOTIncompatibilityTest -vvv

Test Functions:

• test_CLPAcceptsFOTDeposit: Shows CLP accepts FOT tokens on deposit

• test_MAOBRejectsFOTOnPlaceOrders: Shows MAOB rejects FOT tokens during deployment

• test_FullOperationalFailureScenario: End‑to‑end demonstration of the operational trap

• test_WithdrawalWorksForRecovery: Confirms recovery path via withdrawDual

Resolution

Fixed in commit: dd3ec825377d447bbe113bce6636761d901d5d0d

The fix implements Option A (Fail Fast):

• CLP.depositDual()nowusesSafeTokenTransfer.safeTransferFromExact() insteadof thebalance‑delta
pattern

13



Canonic: Smart Contract Audit Report 4 February 2026

• If aFOTtoken isdeposited, the transaction revertswithSafeTokenTransfer__TransferFromAmountMismatch

• This provides a clear error at deposit time rather than a confusing failure during placeOrders()

14



Canonic: Smart Contract Audit Report 4 February 2026

Finding 4: Dust Rung Griefing

Severity: MEDIUM
Status: RESOLVED

Description

If minQuoteMaker is configured too low, an attacker can spam liquidity across all 64 available rungs with minimal
value. Takers attempting to fill orders will iterate through these dust rungs, incurring high gas costs due to ex‑
pensive Fenwick tree update operations per rung (approximately 50‑100k gas each). This can cause 10‑20x gas
amplification for takers and potential transaction failures during network congestion.

Why Takers Cannot Avoid Dust Rungs:

While a maxRung parameter exists on all taker functions, it does not solve this problem. The maxRung parameter is
designed as a price boundary control (limiting how far frommid‑price a taker will trade), not a liquidity quality
control. Takers cannot:

• Knowwhich rungs contain dust: There’s no on‑chain view function to check liquidity quality per rung be‑
fore submitting a transaction

• Skip specific rungs: maxRung only sets an upper bound (e.g., “trade rungs 0‑10”), it cannot say “skip rung 5”

• Avoid dust at desirable rungs: Attackers place dust at LOW rungs (near mid‑price) ‑ exactly where takers
want to trade

The maxRung parameter would only help if dust were isolated to HIGH rungs (far from mid‑price), but rational at‑
tackers place dust at the most‑used rungs to maximize impact.

The gas cost scales with the number of rungs processed, not the value of liquidity obtained. This means:

• Normal: 3 rungs with 3.3 ETH each = 10 ETH, ~3 rung iterations

• Griefed: 100 rungs with 0.1 ETH each = 10 ETH, ~100 rung iterations (33x more gas)

The taker receives the same 10 ETH but pays dramatically more gas in the griefed scenario.

Asymmetric Attack Economics:

This attack is viable because the damage is asymmetric:

15



Canonic: Smart Contract Audit Report 4 February 2026

Attacker Victims (All Takers)

Cost One‑time gas to place dust orders 10‑20x gas on EVERY trade

Duration Single transaction Until dust is cleared

Capital at risk Minimal (dust amounts) N/A

Example: If an attacker spends $1,000 in gas to place dust across all rungs, and 1,000 trades occur before the dust
is cleared, each trademight incur ~$10 extra gas cost. The attacker spent $1,000 but caused $10,000+ in aggregate
damage to protocol users.

Attacker Motivations:

1. Competitor Sabotage: Competing DEXs/AMMs directly benefit when MAOB becomes unusable due to gas
costs. Users migrate to platforms with normal gas costs.

2. Market Maker Warfare: A dominant market maker could grief the protocol to drive away smaller competi‑
tors who cannot absorb the gas overhead, then remove the dust and capture the market.

3. Short Position Exploitation: If anymetric is tied to Canonic’s success (TVL, volume, governance token), an
attacker could short that metric, grief the protocol to reduce usage, and profit from the short.

4. Extortion: Attack the protocol, then privately demand payment to stop. A legitimate threat since clearing
dust costs money.

5. Setup for Secondary Attack: Grief protocol to thin liquidity, making price manipulation or other attacks
easier.

This attack has low attribution risk since dust orders can appear indistinguishable from normal low‑value trading
activity.

Source

**MAOB.sol ‑ _fillAsks Function:**

contracts/MAOB.sol:1070-1114 ‑ Loop iterates through all active rungs:

1 function _fillAsks(...) internal returns (uint256 totalQuoteUsed) {
2 FillAskState memory state;
3 state.remainingBase = baseAmount;
4 state.mask = _activeMask(maxRung, activeAskRungs);
5 uint256 precision = denom / baseScale;

16



Canonic: Smart Contract Audit Report 4 February 2026

6
7 while (state.mask != 0 && state.remainingBase > 0) {
8 uint16 rung = _lsbIndex(state.mask);
9 state.mask &= state.mask - 1;

10
11 RungTotals storage totals = askRungs[rung];
12 state.availableBase = totals.volume;
13 if (state.availableBase == 0) continue;
14
15 uint256 rungPrice = _rungPrice(midPrice, bpsRungs[rung], true);
16 state.priceQ = _roundPriceQ(rungPrice * quoteScale);
17
18 // ... expensive operations per rung
19 state.quoteNeeded = _recordFill(uint16(rung), true, state.fillBase, state.priceQ, denom);
20 // Each _recordFill performs multiple SSTOREs
21 }
22 }

The while loop processes each rung with active liquidity, performing expensive storage writes via _recordFill()
for Fenwick tree updates.

MAOB.sol ‑ minQuoteMaker Check:

contracts/MAOB.sol:1640-1642 ‑ Minimum order value validation:

1 function _checkMinQuoteMaker(uint256 quoteValue) internal view {
2 if (quoteValue < minQuoteMaker) revert MAOB__QuoteAmountTooLow();
3 }

Testnet Configuration (Verified ‑ Partial Mitigation):

Parameter Contract Value Implication

minQuoteMaker MAOB BTC.b/USDm 10e18 ($10) Attack cost: 64 × $10 = $640

minQuoteMaker MAOB USDT0/USDm 10e18 ($10) Provides economic barrier

minQuoteMaker MAOBWETH/USDm 10e18 ($10) May still be viable for griefing

Verification command:

1 cast call 0xd1B3581797797263861bA4f1f18A94002596b5db "minQuoteMaker()" --rpc-url https://carrot.
megaeth.com/rpc

Impact

• Takers may experience 10‑20x gas amplification when filling orders spread across many dust rungs

• Potential transaction failures during network congestion due to gas limit exceeded

• Economic griefing against specific users who need to fill large orders

17



Canonic: Smart Contract Audit Report 4 February 2026

• Current$10minimumprovidesmeaningfulbarrier ($640 to fill all 64 rungs)butmaystill beviable for targeted
griefing in high‑value markets

Remediation

Why maxRung Does Not Mitigate This Issue:

The maxRung parameter exists on all taker functions but does not address dust griefing:

maxRung Capability Dust Griefing Requirement

Sets upper price bound (rungs 0 to N) Need to skip specific dusty rungs

Requires advance knowledge of dust locations No on‑chain visibility into rung liquidity quality

Would help if dust only at high rungs Attackers target low rungs (near mid‑price)

Example: If rungs 0, 2, 4, 6 have dust and rungs 1, 3, 5 have real liquidity, maxRung=6 still processes all dusty rungs.
There’s no way to say “process rungs 1, 3, 5 only.”

Recommended Actions:

1. Implement minimum fill threshold per rung: Add logic to automatically skip rungs where the available
liquidity is below a configurable dust threshold (e.g., minRungLiquidity). The fill loop would check if (
totals.volume < minRungLiquidity) continue; ‑ this removes the burden from takers and makes dust
attacks ineffective.

2. Implement minimum rung liquidity requirement: Add a mechanism that automatically clears or consol‑
idates orders when a rung’s total liquidity falls below a minimum threshold. This prevents dust from accu‑
mulating in the first place.

Resolution

Fixed in commit: f97d0f2913340425c9bc3b64325f0b4f93e4d88e

The fix implements option 1 (minimum fill threshold per rung):

• A new minQuotePerRung parameter is added to all taker functions

• When minQuotePerRung != 0, rungs with liquidity below this threshold are skipped

• This gives takers the ability to avoid dust rungs andmitigate the gas amplification attack

• The parameter is optional (0 disables) to maintain backward compatibility

18



Canonic: Smart Contract Audit Report 4 February 2026

Finding 5: Sole Lp Fee Bypass

Severity: MEDIUM
Status: ACKNOWLEDGED

Description

The withdrawal fee logic in CLP.withdrawDual() contains an off‑by‑one error that allows any sole LP (or last re‑
maining LP) to withdraw their entire position without paying the withdrawal fee.

Due to the MINIMUM_LIQUIDITY mechanism, 1000 shares are permanently locked when a vault is created. This
means themaximum shares any user can hold is totalSupply - 1000. When a user holds this maximum amount
(i.e., they are the sole LP), the fee condition evaluates to FALSE and the fee is bypassed.

Why this happens:

1 if (shares + MINIMUM_LIQUIDITY < supply) {
2 // charge fee
3 }

For a sole LP:

• User holds supply - 1000 shares (the maximum possible)

• Condition: (supply - 1000) + 1000 < supply → supply < supply → FALSE

• Fee block is skipped entirely

This is not a manipulation or edge case ‑ any sole shareholder automatically bypasses the fee simply by being
the only LP in the vault.

Source

CLP.sol ‑ withdrawDual Function:

contracts/CLP.sol:225-231 ‑ Withdrawal fee bypass condition:

1 uint256 feeShares = Math.mulDiv(shares, withdrawalFeeBps, BPS);
2 if (feeShares > 0 && feeShares < shares && shares + MINIMUM_LIQUIDITY < supply) {
3 _burn(msg.sender, feeShares);
4 emit WithdrawalFeeSharesBurned(msg.sender, feeShares);
5 shares -= feeShares;
6 supply -= feeShares;
7 }

19



Canonic: Smart Contract Audit Report 4 February 2026

CLP.sol ‑ MINIMUM_LIQUIDITY Constant:

contracts/CLP.sol:20:

1 uint256 private constant MINIMUM_LIQUIDITY = 1000;

Affected Vaults

Each CLP vault is independent and affected:

CLP Vault withdrawalFeeBps Fee Bypassed

WETH/USDm 10 (0.1%) Yes, for sole LP

BTC.b/USDm 10 (0.1%) Yes, for sole LP

USDT0/USDm 10 (0.1%) Yes, for sole LP

Impact

• Guaranteed fee bypass for sole LPs: No manipulation required ‑ any user who is the only shareholder
automatically pays no withdrawal fee

• Most impactful scenarios:

– Early depositors in new vaults (first LP is sole LP)

– Low‑activity vaults where LPs exit leaving one remaining

– Whale‑dominated vaults where one LP holds majority

• Protocol revenue loss: For a $10M position with 0.1% fee, $10K in fees bypassed

• Incentivemisalignment: The largestwithdrawer (sole LP)paysno fee,while smaller LPs inmulti‑user vaults
pay full fee

Remediation

Change the condition from < to <=:

1 if (feeShares > 0 && feeShares < shares && shares + MINIMUM_LIQUIDITY <= supply) {
2 _burn(msg.sender, feeShares);
3 emit WithdrawalFeeSharesBurned(msg.sender, feeShares);
4 shares -= feeShares;
5 supply -= feeShares;
6 }

20



Canonic: Smart Contract Audit Report 4 February 2026

This ensures the fee is applied even when the user holds the maximum possible shares (supply -
MINIMUM_LIQUIDITY).

POC

File: Sole_LP_Fee_Bypass/WithdrawalFeeBypassPoC.t.sol

Scenario:

1. User deposits into CLP vault, becoming the sole LP

2. User holds totalSupply - 1000 shares (the maximum possible)

3. User calls withdrawDual()with all their shares

4. Condition shares + 1000 < supply evaluates to supply < supply → FALSE

5. Fee block is skipped, user withdraws without paying 0.1% fee

How to Run:

1 cd canonic-contracts-main-latest
2 forge test --match-contract WithdrawalFeeBypassTest -vvv

Acknowledgment

Status: Intended Design

The team clarified that this behavior is intentional:

“The withdrawal fee goes to the remaining LPs, not to the protocol. The purpose of this withdrawal fee is to
prevent gaming behavior, such as users timing deposits and withdrawals to extract arbitrage at the expense
of other LPs. When a user withdraws, they pay a fee that is redistributed to the other LPs for this reason.
However, if a user is the last LP to withdraw, there are no remaining LPs to be harmed or gamed. Since there
is no one left to protect, the 0.1%withdrawal fee is not charged to the final LP.”

This explanation is economically sound:

• The fee mechanismworks via share burning, which benefits remaining shareholders

• The MINIMUM_LIQUIDITY (1000 shares) is permanently locked and cannot be withdrawn

• If a fee were charged to the sole LP, the burned value would accrue to shares that can never be claimed

• Charging a fee that benefits no one would be economically wasteful

The behavior is acknowledged as intended design rather than a vulnerability.

21



Canonic: Smart Contract Audit Report 4 February 2026

Finding 6: Asymmetric Pause State

Severity: MEDIUM
Status: RESOLVED

Description

The MAOB contract implements independent pause controls for maker and taker operations via setMakerPaused
() and setTakerPaused(). This design allows the contract to enter asymmetric pause stateswhere one side of the
market is frozen while the other remains active.

Asymmetric Pause Analysis:

Asymmetric pause capabilities can serve legitimate purposes, but require careful constraints to avoid market in‑
tegrity risks:

Pause State Legitimate Use Risk Level Notes

Both paused Emergency shutdown Low Standard,
unambiguous

Neither paused Normal operation None Expected state

Makers paused, takers
active

Emergency unwind Medium Allows users to
exit positions;
prevents new
potentially
problematic
orders

Takers paused, makers
active

No clear use case High Allows book
shaping
without price
discovery;
resembles
market
manipulation

“Makers paused, takers active” can be defensible as an emergency unwind mode—for example, if a bug is dis‑
covered in order validation logic, halting new orders while allowing users to exit existing positions is reasonable.
However, this requires:

22



Canonic: Smart Contract Audit Report 4 February 2026

• Time bounds (auto‑expire after N blocks)

• Public reason codes

• Pre‑defined as an explicit emergency state, not arbitrary admin discretion

“Takers paused, makers active” is difficult to justify. It allows the order book to be reshaped without market
clearing, creating conditions where insiders could seed favorable orders before execution resumes.

Current Implementation Concerns:

The current implementationprovides unconstraineddiscretionary control rather than aboundedemergency state
machine:

1. No time limits: Asymmetric states can persist indefinitely

2. No reason codes: No on‑chain record of why the state was entered

3. Arbitrary combinations: Any pause configuration is possible at admin discretion

4. No pre‑defined states: Not structured as explicit emergency modes

The Atomic Transaction Problem:

Beyond market integrity concerns, the asymmetric state interacts problematically with standard market maker
operations. Professional liquidity providers update orders atomically (cancel old order + place new order in single
transaction) to avoid leaving capital idle.

Whenmakers are paused:

1. Atomic update transaction begins

2. cancelOrder() executes successfully (not pause‑protected)

3. addLiquidity() reverts (pause‑protected)

4. Entire transaction reverts, including the cancel

5. Maker’s old order at stale price remains active

6. Takers (not paused) can execute against the stale order

This creates a scenario wheremakers cannot update stale positions but those positions remain executable by tak‑
ers.

23



Canonic: Smart Contract Audit Report 4 February 2026

Source

MAOB.sol ‑ Independent Pause Controls:

contracts/MAOB.sol:753-763 ‑ Separate pause functions allow arbitrary asymmetric states:

1 function setTakerPaused(bool paused) external onlyOwner {
2 takerPaused = paused;
3 emit TakerPaused(paused);
4 }
5
6 function setMakerPaused(bool paused) external onlyOwner {
7 makerPaused = paused;
8 emit MakerPaused(paused);
9 }

MAOB.sol ‑ Asymmetric Enforcement:

contracts/MAOB.sol:1659-1665 ‑ Pause checks are applied independently:

1 function _checkTakerNotPaused() internal view {
2 if (takerPaused) revert MAOB__TakerPaused();
3 }
4
5 function _checkMakerNotPaused() internal view {
6 if (makerPaused) revert MAOB__MakerPaused();
7 }

Impact

• Market Integrity Risk: Unconstrained asymmetric pause allows states that could be perceived as or enable
market manipulation

• AtomicUpdateTrap: Standardmarketmaker patterns (cancel + replace) fail in away that leaves stale orders
active and executable

• Value ExtractionWindow: The “makers paused, takers active” state without time bounds allows extended
periods where makers cannot protect their positions

• Governance Trust: Arbitrary pause combinations without reason codes make post‑mortems difficult and
reduce user trust

Remediation

Two approaches, depending on whether asymmetric pause capability is desired:

Option 1 ‑ Single Pause Flag (Simplest):

If asymmetric pause is not required, replace independent flags with a single unified pause:

24



Canonic: Smart Contract Audit Report 4 February 2026

1 bool public paused;
2
3 function setPaused(bool _paused) external onlyOwner {
4 paused = _paused;
5 emit Paused(_paused);
6 }
7
8 function _checkNotPaused() internal view {
9 if (paused) revert MAOB__Paused();

10 }

This is the most defensible default—simple, auditable, and eliminates ambiguity.

Option 2 ‑ Constrained Emergency State Machine:

If asymmetric pause serves a legitimate emergency function, constrain it to pre‑defined states with bounds:

1 enum MarketState {
2 Active,
3 Halted, // Both paused
4 UnwindOnly // Makers paused, takers active (time-limited)
5 }
6
7 MarketState public marketState;
8 uint256 public stateExpiresAt;
9

10 function setMarketState(MarketState _state, string calldata reason) external onlyOwner {
11 if (_state == MarketState.UnwindOnly) {
12 stateExpiresAt = block.timestamp + 1 hours; // Auto-expire
13 }
14 marketState = _state;
15 emit MarketStateChanged(_state, reason);
16 }

Key constraints:

• Pre‑defined states only: No arbitrary combinations

• Time bounds: Asymmetric states auto‑expire

• Reason codes: On‑chain record of intent

• No “takers paused, makers active”: This combination is excluded as it lacks legitimate use

Either approach improves market integrity and governance trust.

Resolution

Fixed in commit: 0d66b87aa5f0c830be534d27b5ecae9c17477c43

The fix implements Option 2 (Constrained Emergency State Machine):

• Replaced takerPaused and makerPaused booleans with a MarketState enum: Active, Halted, UnwindOnly

25



Canonic: Smart Contract Audit Report 4 February 2026

• UnwindOnly state has a 1‑hour auto‑expiry (UNWIND_DURATION = 1 hours)

• Guardian can set Halted or UnwindOnly instantly, but only owner (timelock) can set Active

• The “takers paused, makers active” combination is explicitly excluded

• Reason codes are required via a string calldata reason parameter

26



Canonic: Smart Contract Audit Report 4 February 2026

Finding 7: Withdrawal Fee Dilution

Severity: MEDIUM
Status: RESOLVED

Description

The CLP withdrawal fee mechanism suffers from an order‑of‑operations flaw that causes large liquidity providers
to pay significantly less than the configured fee rate. The fee is implemented by burning shares before calculating
the withdrawal payout, but because the payout calculation uses the post‑burn supply, users capture a portion of
the value accretion caused by their own fee burn.

The Mathematical Problem:

When shares are burned, the total supply decreases, which increases the value per remaining share. Since the
withdrawing user still holds their remaining shares at the moment of payout calculation, they benefit from this
supply reduction—effectively “buying back” part of their own fee.

Effective Fee Formula:

1 Effective Fee = Nominal Fee × (1 - userShareOfPool)

User Pool Share Configured Fee Effective Fee Fee Reduction

10% 10% 9.0% 10% less

25% 10% 7.5% 25% less

50% 10% 5.0% 50% less

75% 10% 2.5% 75% less

90% 10% 1.0% 90% less

Worked Example:

Setup:

• Pool holds 1,000 Base tokens, 1,000 Quote tokens

• Total supply: 1,000 shares

• User owns 500 shares (50% of pool)

• Withdrawal fee: 10%

27



Canonic: Smart Contract Audit Report 4 February 2026

Current implementation:

1. feeShares = 500 × 10% = 50

2. Burn 50 shares → supply becomes 950

3. User’s remaining shares: 450

4. baseOut = 1000 × (450 / 950) = 473.68 Base

Correct implementation:

1. feeShares = 500 × 10% = 50

2. Net shares: 450

3. baseOut = 1000 × (450 / 1000) = 450 Base

Result: User receives 473.68 Base instead of 450 Base—an effective fee of 5.26% instead of 10%.

Whale Example ‑ Extreme Case:

Setup:

• Pool holds 1,000 Base tokens

• Total supply: 1,000 shares

• Whale owns 990 shares (99% of pool)

• Small LPs own 10 shares (1% of pool)

• Withdrawal fee: 10%

Current implementation:

1. Whale withdraws 990 shares

2. feeShares = 990 × 10% = 99 shares burned

3. New supply = 901, whale’s remaining shares = 891

4. baseOut = 1000 × (891 / 901) = 989 Base

Correct implementation:

1. baseOut = 1000 × (891 / 1000) = 891 Base

28



Canonic: Smart Contract Audit Report 4 February 2026

Outcome Buggy Correct

Whale receives 989 Base 891 Base

Pool remaining 11 Base 109 Base

Small LPs gain from fee 1 Base 99 Base

Whale’s effective fee 0.1% 10%

The whale reclaims 98 of the 99 Base fee value. Due to the calculation order, the fee value that should benefit
remaining LPs (99 Base) is largely retained by the withdrawing user, leaving small LPs with only 1 Base instead of
99 Base.

Source

CLP.sol ‑ withdrawDual Fee Calculation:

contracts/CLP.sol:225-234 ‑ Fee shares burned before payout calculation:

1 uint256 feeShares = Math.mulDiv(shares, withdrawalFeeBps, BPS);
2 if (feeShares > 0 && feeShares < shares && shares + MINIMUM_LIQUIDITY < supply) {
3 _burn(msg.sender, feeShares);
4 emit WithdrawalFeeSharesBurned(msg.sender, feeShares);
5 shares -= feeShares;
6 supply -= feeShares; // Supply reduced BEFORE payout calculation
7 }
8
9 baseOut = Math.mulDiv(totalBase, shares, supply); // Uses reduced supply

10 quoteOut = Math.mulDiv(totalQuote, shares, supply);

The vulnerability is in lines 229‑230: supply is decremented by feeShares before being used as the denominator
in the payout calculation. This inflates the payout per remaining share, allowing the user to recapture value from
their burned fee shares.

Impact

• Protocol Revenue Loss: CLP vaults collect less fee revenue than configured, scaling with LP concentration

• Whale Advantage: Large liquidity providers pay disproportionately lower effective fees than small LPs

• Defeated Economic Purpose: If withdrawal fees are intended to discourage short‑term liquidity or protect
remaining LPs, the mechanism fails for the users it matters most (large withdrawals)

• Equity Concern: Small LPs pay close to the full fee rate while whales pay a fraction

29



Canonic: Smart Contract Audit Report 4 February 2026

Remediation

Calculate the payout using the original supply value, ensuring the fee deduction is not diluted by the share burn:

Option 1 ‑ Calculate with original supply:

1 uint256 feeShares = Math.mulDiv(shares, withdrawalFeeBps, BPS);
2 uint256 netShares = shares;
3
4 if (feeShares > 0 && feeShares < shares && shares + MINIMUM_LIQUIDITY < supply) {
5 _burn(msg.sender, feeShares);
6 emit WithdrawalFeeSharesBurned(msg.sender, feeShares);
7 netShares = shares - feeShares;
8 // Do NOT update supply variable used in calculation
9 }

10
11 // Use original supply, not post-burn supply
12 baseOut = Math.mulDiv(totalBase, netShares, supply);
13 quoteOut = Math.mulDiv(totalQuote, netShares, supply);

Option 2 ‑ Calculate gross payout first, then deduct fee:

1 // Calculate gross payout first
2 uint256 grossBase = Math.mulDiv(totalBase, shares, supply);
3 uint256 grossQuote = Math.mulDiv(totalQuote, shares, supply);
4
5 // Apply fee to payout amounts
6 uint256 feeBase = Math.mulDiv(grossBase, withdrawalFeeBps, BPS);
7 uint256 feeQuote = Math.mulDiv(grossQuote, withdrawalFeeBps, BPS);
8
9 baseOut = grossBase - feeBase;

10 quoteOut = grossQuote - feeQuote;
11
12 // Handle share burning separately if needed for accounting

Either approach ensures that the effective fee ratematches the configured withdrawalFeeBps regardless of user’s
pool share.

POC

File: Withdrawal_Fee_Dilution/WithdrawalFeeDilutionPoC.t.sol

Scenario:

1. Whale owns 99% of CLP vault (990 of 1000 shares)

2. Withdrawal fee is configured at 10%

3. Whale calls withdrawDual()with all shares

4. Fee shares (99) are burned, supply drops to 901

5. Payout calculated: 1000 × (891 / 901) = 989 instead of 891

30



Canonic: Smart Contract Audit Report 4 February 2026

6. Whale receives 989 instead of 891, effectively paying 0.1% fee

7. Small LPs receive only 1 of the 99 fee value

How to Run:

1 cd canonic-contracts-main-latest
2 forge test --match-contract WithdrawalFeeDilutionTest -vvv

Test Functions:

• test_50PercentLP_PaysHalfFee: 50% LP pays ~5% instead of 10%

• test_99PercentWhale_PaysAlmostNoFee: 99%whale pays ~0.1% instead of 10%

• test_FeeDilutionScalesWithPoolShare: Verifies formula across pool shares

Resolution

Fixed in commit: 93d3b229d51f19a670fb778d4cc6c2690603b0a6

The fix implements Option 1 (calculate with original supply):

• Introduced netShares variable to track shares after fee deduction

• The supply variable is no longer modified after fee share burning

• Payout is calculated as Math.mulDiv(totalBase, netShares, supply) using the original supply

• This ensures the effective fee ratematches the configured withdrawalFeeBps regardless of user’s pool share

31



Canonic: Smart Contract Audit Report 4 February 2026

Finding 8: Rebasing Token Insolvency

Severity: LOW
Status: ACKNOWLEDGED

Description

MAOB uses internal accounting (askRungs[].volume, bidRungs[].volume) to track liabilities. If a negative rebas‑
ing token (e.g., stETHduring slashing events) is used as base or quote token, the contract’s actual balancewill drop
below its internal liabilities, causing insolvency where last withdrawers cannot retrieve their funds.

Source

MAOB.sol ‑ Internal Accounting:

contracts/MAOB.sol ‑ Volume tracked separately from actual balance:

1 // Rung storage tracks expected volumes
2 struct RungTotals {
3 uint256 volume; // Internal accounting of expected funds
4 }
5
6 mapping(uint16 => RungTotals) public askRungs;
7 mapping(uint16 => RungTotals) public bidRungs;

The contract tracks volume as internal accounting but never reconciles this against actual token balances. For
standard ERC20 tokens, these values remain synchronized. However, rebasing tokens can change balance inde‑
pendent of transfers.

MAOB.sol ‑ Withdrawal Logic:

contracts/MAOB.sol:1597-1612 ‑ Withdraws based on internal accounting:

1 function _withdraw(address user) internal returns (uint256 baseOut, uint256 quoteOut) {
2 baseOut = withdrawableBase[user];
3 quoteOut = withdrawableQuote[user];
4 if (baseOut == 0 && quoteOut == 0) return (0, 0);
5
6 if (baseOut != 0) {
7 withdrawableBase[user] = 0;
8 baseToken.safeTransfer(user, baseOut); // May fail if actual balance < internal accounting
9 }

10 if (quoteOut != 0) {
11 withdrawableQuote[user] = 0;
12 quoteToken.safeTransfer(user, quoteOut);
13 }
14 }

32



Canonic: Smart Contract Audit Report 4 February 2026

CLP.sol ‑ Same Issue:

contracts/CLP.sol ‑ CLP inherits this vulnerability through its interaction with MAOB and its own internal ac‑
counting for share valuations.

Impact

• Complete loss for last withdrawers, potentially up to 100% of their deposited tokens

• No recovery mechanism exists within the contract

• Protocol becomes insolvent without admin intervention

• Particularly dangerous for stETH‑like tokens that can experience negative rebases during validator slashing
events

• The insolvency is permanent and irreversible without external fund injection

Remediation

Maintain a blessed whitelist of approved non‑rebasing tokens. Admins should only deploy MAOB and CLP in‑
stances with tokens from this whitelist to protect against rebasing token insolvency. Tokens such as stETH, AMPL,
or other rebasing/elastic supply tokens must be explicitly excluded from the whitelist.

Acknowledgment

Status: Known Design Limitation

Team Response:

“Noted. We can only deploy markets with tokens that have fast oracles. This set of tokens is very small. Op‑
erationally the teamwill verify that each token is non‑rebasing before deploying.”

The protocol is intended toworkwith standard ERC20 tokens only. The teamhas committed to verifying that each
token is non‑rebasing as part of their deployment procedures. Given that the supported token set is constrained
by oracle availability, the operational risk is mitigated through deployment‑time verification.

33



Canonic: Smart Contract Audit Report 4 February 2026

Disclaimer

This security report (“Report”) is provided by FailSafe (“Tester”) for the exclusive use of the client (“Client”). The
scope of this assessment is limited to the security testing services performed against the systems, applications,
or environments supplied by the Client. This Report is subject to the terms and conditions (including without
limitation, description of services, confidentiality, disclaimer, and limitation of liability) set forth in the Services
Agreement, or the scope of services, and terms and conditions provided to you (“Customer” or the “Company”) in
connection with the Agreement. This Report, provided in connection with the Services set forth in the Agreement,
shall be used by the Company only to the extent permitted under the terms and conditions set forth in the Agree‑
ment. This Report may not be transmitted, disclosed, referred to, or relied upon by any person for any purpose,
normay copies be delivered to any other person other than the Company, without FailSafe’s prior written consent
in each instance.

This Report is not, nor should it be considered, an “endorsement” or “disapproval” of any particular project, sys‑
tem, or team. This Report is not, nor should it be considered, an indication of the economics or value of any “prod‑
uct” or “asset” created by any team or project that contracts FailSafe to perform security testing. This Report
does not provide any warranty or guarantee regarding the absolute security or bug‑free nature of the technology
analyzed, nor does it provide any indication of the technology’s proprietors, business, business model, or legal
compliance.

ThisReport shouldnotbeused inanyway tomakedecisionsaround investmentor involvementwithanyparticular
project. This Report in no way provides investment advice, nor should it be leveraged as investment advice of any
sort. This Report represents anextensive testingprocess intended tohelpour customers identify potential security
weaknesses while reducing the risks associated with complex systems and emerging technologies.

Technology systems, applications, andcryptographicassetspresentahigh level of ongoing risk. FailSafe’sposition
is that each company and individual are responsible for their own due diligence and continuous security practices.
FailSafe’s goal is to help reduce attack vectors and the high level of variance associated with utilizing new and
evolving technologies, and in no way claims any guarantee of security or functionality of the systems we agree to
test.

The security testing services provided by FailSafe are subject to dependencies and are under continuing develop‑
ment. You agree that your access and/or use, including but not limited to any services, reports, andmaterials, will
be at your sole risk on an as‑is, where‑is, and as‑available basis. The testing process may include false positives,
false negatives, and other unpredictable results. The services may access and depend upon multiple layers of
third‑party technologies.

ALL SERVICES, THE LABELS, THE TESTING REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS
OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL FAULTS AND DE‑
FECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, FAIL‑
SAFE HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RE‑

34



Canonic: Smart Contract Audit Report 4 February 2026

SPECT TO THE SERVICES, TESTING REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING, FAIL‑
SAFESPECIFICALLYDISCLAIMSALL IMPLIEDWARRANTIESOFMERCHANTABILITY, FITNESSFORAPARTICULARPUR‑
POSE, TITLE AND NON‑INFRINGEMENT, AND ALL WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR
TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, FAILSAFE MAKES NO WARRANTY OF ANY KIND THAT THE
SERVICES, THE LABELS, THE TESTING REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR
RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE
ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE
SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR‑FREE.

WITHOUT LIMITATION TO THE FOREGOING, FAILSAFE PROVIDES NO WARRANTY OR DISCLAIMER UNDERTAKING,
AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,
ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYS‑
TEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS
OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN ORWILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER FAILSAFE NOR ANY OF FAILSAFE’S AGENTSMAKES ANY REPRESEN‑
TATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR CURRENCY OF
ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. FAILSAFEWILL ASSUME NO LIABILITY OR RE‑
SPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT ANDMATERIALS OR FOR ANY LOSS
ORDAMAGEOF ANYKIND INCURREDAS A RESULTOF THEUSEOF ANY CONTENT, OR (II) ANY PERSONAL INJURYOR
PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO OR USE OF THE
SERVICES, TESTING REPORT, OR OTHER MATERIALS.

ALL THIRD‑PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION ORWARRANTY OF OR CONCERN‑
ING ANY THIRD‑PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD‑PARTY OWNER OR DISTRIB‑
UTOR OF THE THIRD‑PARTY MATERIALS.

THE SERVICES, TESTING REPORT, AND ANYOTHERMATERIALS HEREUNDER ARE SOLELY PROVIDED TOCUSTOMER
AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY IDENTIFIED IN
THIS AGREEMENT, NORMAY COPIES BE DELIVERED TO ANYOTHER PERSONWITHOUT FAILSAFE’S PRIORWRITTEN
CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENE‑
FICIARY OF SUCH SERVICES, TESTING REPORT, AND ANY ACCOMPANYING MATERIALS AND NO SUCH THIRD PARTY
SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST FAILSAFE WITH RESPECT TO SUCH SERVICES, TESTING RE‑
PORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF FAILSAFE CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE
BENEFITOFCUSTOMER. ACCORDINGLY, NOTHIRDPARTYORANYONEACTINGONBEHALFOFANYTHEREOF, SHALL
BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS ANDWARRANTIES AND NO SUCH THIRD
PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST FAILSAFE WITH RESPECT TO SUCH REPRESENTA‑
TIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREE‑
MENT OR OTHERWISE.

35



Canonic: Smart Contract Audit Report 4 February 2026

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED TESTING REPORTS OR MATERIALS,
SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL, REGULATORY, OR OTHER
ADVICE.

36


	Project Details
	Structure & Organization of The Security Report

	Executive Summary
	Summary of Findings
	Finding 1: Malicious Oracle Feed Configuration
	Finding 2: Oracle Staleness Configuration
	Finding 3: Fee On Transfer Incompatibility
	Finding 4: Dust Rung Griefing
	Finding 5: Sole Lp Fee Bypass
	Finding 6: Asymmetric Pause State
	Finding 7: Withdrawal Fee Dilution
	Finding 8: Rebasing Token Insolvency

	Disclaimer

